

Assessment Schedule – 2013**Calculus: Apply differentiation methods in solving problems (91578)****Evidence Statement**

One	Expected Coverage	Achievement	Merit	Excellence
(a)	$\frac{dy}{dx} = \sec^2(x^2 + 1) \cdot 2x$	Correct derivative.		
(b)	$\frac{dy}{dx} = \frac{3-e^x}{3x-e^x}$ or no tangent exists At $x = 0$ gradient = -2	Correct solution with correct derivative shown.		
(c)	$\frac{dy}{dx} = -2xe^{6-x^2}$ $\frac{d^2y}{dx^2} = -2e^{6-x^2} + 4x^2e^{6-x^2}$ Point of inflection when $\frac{d^2y}{dx^2} = 0$ $(4x^2 - 2)e^{6-x^2} = 0$ $4x^2 - 2 = 0$ $x = \pm \frac{1}{\sqrt{2}}$	Correct $\frac{dy}{dx}$	Correct solution with correct first and second derivatives. \pm not required, accept positive answer only.	
(d)	$\frac{dx}{dt} = 5\cos t$ $\frac{dy}{dt} = 3\sec^2 t = \frac{3}{\cos^2 t}$ $\frac{dy}{dx} = \frac{3}{5\cos^3 t}$ At $t = \frac{\pi}{3}$, $\frac{dy}{dx} = \frac{24}{5} (= 4.8)$ \therefore gradient of normal = $\frac{-5}{24} (= -0.2083)$	Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$.	Correct solution including all correct derivatives.	

(e)	$20 = 2\pi r^2 + 2\pi r h$ $2\pi r(r + h) = 20$ $h = \frac{10}{\pi r} - r$ $V = \pi r^2 h = \pi r^2 \cdot \left(\frac{10}{\pi r} - r \right)$ $V = 10r - \pi r^3$ $\frac{dV}{dr} = 10 - 3\pi r^2$ $\frac{dV}{dr} = 0 \implies r = \sqrt{\frac{10}{3\pi}} \text{ or } r = 1.03 \text{ m}$ <p>OR $20 = \pi r^2 + 2\pi r h$</p> $V = 10r - \frac{\pi r^3}{2}$ $\frac{dV}{dr} = 10 - \frac{3\pi r^2}{2}$ $r = \sqrt{\frac{20}{3\pi}} = 1.46$		Equation for volume in terms of 1 variable found, and differentiated correctly.	Problem solved including correct derivative.
-----	--	--	---	--

NØ = No response / no relevant evidence

N1 = ONE question demonstrating limited knowledge of differentiation techniques

N2 = ONE correct derivative

A3 = TWO of Achievement

A4 = THREE of Achievement

M5 = ONE of Merit

M6 = TWO of Merit

E7 = Excellence with minor errors ignored

E8 = Excellence correct

Two	Expected Coverage	Achievement	Merit	Excellence
(a)	$\frac{dy}{dx} = \frac{1}{3}(\pi - x^2)^{\frac{-2}{3}} \cdot -2x$ or $\frac{dy}{dx} = \frac{-2x}{3(\pi - x^2)^{\frac{2}{3}}}$	Correct derivative.		
(b)	$\frac{dy}{dx} = 3(x^3 - 2x)^2 \cdot (3x^2 - 2)$ At $x = 1$, $\frac{dy}{dx} = 3 \cdot (-1)^2 \cdot 1 = 3$ At $x = 1$, $y = -1$ $y + 1 = 3(x - 1)$ $y = 3x - 4$	Correct solution with correct derivative shown.		
(c)	$f'(x) = 1 - e^x + \frac{k}{x^2}$ $f'(x) = 0 \Rightarrow 1 - e^{-1} + k = 0$ $k = e^{-1} - 1$ Or $k = -0.632$	Correct derivative.	Correct value for k and correct derivative.	
(d)(i)	1. $x = 1$		THREE correct answers (out of 5).	
(ii)	2. $x > 3$			
(iii)	3. $-2, -1, 3$ -3 Does not exist.			
(e)	$A(\theta) = 64\sin\theta + 64\sin\theta\cos\theta$ OR $A(\theta) = 64\sin\theta + 32\sin 2\theta$ $A'(\theta) = 64\cos\theta + 64\cos^2\theta - 64\sin^2\theta$ OR $A'(\theta) = 64\cos\theta + 64\cos 2\theta$ $= 64\cos\theta + 64\cos^2\theta - 64(1 - \cos^2\theta)$ $= 64(2\cos^2\theta + \cos\theta - 1)$ Minimum when $A'(\theta) = 0$ $2\cos^2\theta + \cos\theta - 1 = 0$ $(2\cos\theta - 1)(\cos\theta + 1) = 0$ Or $\cos\theta = \frac{1}{2}$ or $\cos\theta = -1$ (NO) $\theta = 60^\circ$ or $\theta = \frac{\pi}{3}$		Correct derivative.	Correct solution with correct derivatives.

N0 = No response / no relevant evidence

N1 = ONE question demonstrating limited knowledge of differentiation techniques

N2 = ONE correct derivative

A3 = TWO of Achievement

A4 = THREE of Achievement

M5 = ONE of Merit

M6 = TWO of Merit

E7 = Excellence with minor errors ignored

E8 = Excellence correct

Three	Expected Coverage	Achievement	Merit	Excellence
(a)	$\frac{dy}{dx} = \frac{x^2 \cdot \cos 2x \cdot 2 - 2x \sin 2x}{x^4}$	Correct derivative.		
(b)	$f'(x) = 1 - 16(x-2)^{-2}$ <p>Turning point when $f'(x) = 0$</p> $1 = \frac{16}{(x-2)^2}$ $(x-2)^2 = 16$ $x = -2 \text{ or } x = 6$	Correct solution with correct derivative.		
(c)	$f'(x) = 50 - \left(30 \ln 2x + 30x \cdot \frac{1}{x} \right)$ $= 20 - 30 \ln 2x$ <p>Maximum when $f'(x) = 0$</p> $20 = 30 \ln 2x$ $\frac{2}{3} = \ln 2x$ $x = \frac{e^{\frac{2}{3}}}{2} = 0.974$	Correct derivative.	Correct solution with correct derivative.	
(d)	<p>For the curve, $\frac{dy}{dx} = \frac{3t^2 - 3}{2t - 1}$</p> <p>Normal parallel to the y-axis means tangent parallel to the x-axis.</p> $\Rightarrow \frac{dy}{dx} = 0$ $3t^2 = 3$ $t = \pm 1$ $t = 1 \Rightarrow \text{point } (0, -2)$ $t = -1 \Rightarrow \text{point } (2, 2)$	Correct expression for $\frac{dy}{dx}$	Correct solution with correct derivative.	

(e)	$\frac{dV}{dt} = 300$ $A = 4\pi r^2 \Rightarrow \frac{dA}{dr} = 8\pi r$ $V = \frac{4}{3}\pi r^3 \Rightarrow \frac{dV}{dr} = 4\pi r^2$ $\frac{dA}{dt} = \frac{dA}{dr} \cdot \frac{dr}{dt} = \frac{dA}{dr} \cdot \frac{dV}{dt}$ $= \frac{2400\pi r}{4\pi r^2}$ $= \frac{600}{r}$ $A = 7500 \Rightarrow 4\pi r^2 = 7500$ $r = \sqrt{\frac{7500}{4\pi}} = 24.43 \text{ cm}$ $\therefore \frac{dA}{dt} = \frac{600}{24.43} = 24.56 \text{ cm}^2 \text{ s}^{-1}$	<p>Correct expressions for $\frac{dV}{dr}$ and $\frac{dA}{dr}$</p>	<p>Correct expressions for $\frac{dV}{dr}$, $\frac{dA}{dr}$ and $\frac{dA}{dt}$</p>	<p>Correct solution along with correct expressions for $\frac{dV}{dr}$, $\frac{dA}{dr}$ and $\frac{dA}{dt}$</p>
-----	--	--	--	--

N0 = No response / no relevant evidence

N1 = ONE question demonstrating limited knowledge of differentiation techniques

N2 = ONE correct derivative

A3 = TWO of Achievement

A4 = THREE of Achievement

M5 = ONE of Merit

M6 = TWO of Merit

E7 = Excellence with minor errors ignored

E8 = Excellence correct

Judgement Statement

	Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
Score range	0 – 8	9 – 13	14 – 20	21 – 24